Object
Spinal cord injury (SCI) often results in considerable permanent neurological impairment, and unfortunately, the successful translation of effective treatments from laboratory models to human patients is lacking. This may be partially attributed to differences in anatomy, physiology, and scale between humans and rodent models. One potentially important difference between the rodent and human spinal cord is the presence of a significant CSF volume within the intrathecal space around the human cord. While the CSF may “cushion” the spinal cord, pressure waves within the CSF at the time of injury may contribute to the extent and severity of the primary injury. The objective of this study was to develop a model of contusion SCI in a miniature pig and establish the feasibility of measuring spinal CSF pressure during injury.
Methods
A custom weight-drop device was used to apply thoracic contusion SCI to 17 Yucatan miniature pigs. Impact load and velocity were measured. Using fiber optic pressure transducers implanted in the thecal sac, CSF pressures resulting from 2 injury severities (caused by 50-g and 100-g weights released from a 50-cm height) were measured.
Results
The median peak impact loads were 54 N and 132 N for the 50-g and 100-g injuries, respectively. At a nominal 100 mm from the injury epicenter, the authors observed a small negative pressure peak (median −4.6 mm Hg [cranial] and −5.8 mm Hg [caudal] for 50 g; −27.6 mm Hg [cranial] and −27.2 mm Hg [caudal] for 100 g) followed by a larger positive pressure peak (median 110.5 mm Hg [cranial] and 77.1 mm Hg [caudal] for 50 g; 88.4 mm Hg [cranial] and 67.2 mm Hg [caudal] for 100 g) relative to the preinjury pressure. There were no significant differences in peak pressure between the 2 injury severities or the caudal and cranial transducer locations.
Conclusions
A new model of contusion SCI was developed to measure spinal CSF pressures during the SCI event. The results suggest that the Yucatan miniature pig is an appropriate model for studying CSF, spinal cord, and dura interactions during injury. With further development and characterization it may be an appropriate in vivo largeanimal model of SCI to answer questions regarding pathological changes, therapeutic safety, or treatment efficacy, particularly where humanlike dimensions and physiology are important.