Synthesis, characterization, and applications of colloidal nanoparticles have been a prominent topic of current research interests within the last two decades. Available reports in the literature that describe the synthesis of colloidal nanoparticles are abundant with various degrees of reproducibility and simplicity. Moreover, different methods for the characterization of colloidal nanoparticles' basic properties are employed, resulting in conflicting results in many cases. Herein, we describe "in detail" selected standard protocols for the synthesis, purification, and characterization of various types of colloidal inorganic nanoparticles including gold nanoparticles, silver nanoparticles, iron oxide nanoparticles, and quantum dots. This report consists of five main parts: The first and the second part are dedicated to describing the synthesis of various types of hydrophobic and hydrophilic nanoparticles in organic solvents and in aqueous solutions, respectively. The third part describes surface modification of nanoparticles with focus on ligand exchange reactions, to allow phase transfer of nanoparticles from aqueous to organic solvents and vice versa. The fourth and the fifth part describe various general purification and characterization techniques used to purify and characterize nanoparticles, respectively. Collectively, this contribution does not aim to cover all available protocols in the literature to prepare inorganic nanoparticles, but rather provides detailed synthetic procedures to important inorganic nanocrystals with full description of their purification and characterization process.