This research aims to analyze the welding of 1 mm thick NiTinol sheets using an autogenous double pulse tungsten inert gas (DPTIG) welding process. The effect of heat input (HI) on bead geometry, microstructure, hardness, tensile strength, phase transformation temperature (PTT), and corrosion behavior was studied. The lower (111.25 J/mm), and higher (120.14 J/mm) HI produced an average grain size of 26 μm and 36 μm, respectively. The microstructure of the fusion zone (FZ) had coarser columnar grains with intermetallic phases such as Ni3Ti, and TiO2. The grain size in the FZ increased with the increase in HI. Sample P (111.25 J/mm) showed a higher hardness of 280.54 HV and tensile strength of 566 MPa due to a higher proportion of austenite phase (99.4%), the smaller grain size of 26 µm, a larger fraction of high angle grain boundary (HAGB) of 75.8%, and higher kernel average misorientation (KAM) value of 4.93. Compared to base metal (BM), sample P (111.25 J/mm), and sample S (120.14 J/mm) exhibited a reduction in tensile strength of 19.14% and 32.29%, respectively. The decline in hardness and tensile strength was attributed to the formation of intermetallic phases, a decrease in the Ti/Ni ratio, coarser grain formation, and a decrease in HAGB fraction and KAM values. The fractured tensile samples showed a mixed mode of fracture with dimples and cleavage facets. Compared to BM, Sample Q (118.05 J/mm) exhibited lesser variation in temperature hysteresis values for austenite and martensite temperatures, with a deviation of 0.4°C and 3.1°C, respectively. All the welded samples had better corrosion behavior than the BM due to a higher Ti/Ni ratio.