This work critically reviews the evolution of reactive sputtering modeling that has taken place over the last 50 years. The review summarizes the main features of the deposition of simple metal compound films (nitrides, oxides, oxynitrides, carbides, etc.) that were experimentally found by different researchers. The above features include significant non-linearity and hysteresis. At the beginning of the 1970s, specific chemisorption models were proposed. These models were based on the assumption that a compound film was formed on the target due to chemisorption. Their development led to the appearance of the general isothermal chemisorption model, which was supplemented by the processes on the surfaces of the vacuum chamber wall and the substrate. The model has undergone numerous transformations for application to various problems of reactive sputtering. At the next step in the development of modeling, the reactive sputtering deposition (RSD) model was proposed, which was based on the implantation of reactive gas molecules into the target, bulk chemical reaction, chemisorption, and the “knock-on effect”. Another direction of the modeling development is represented by the nonisothermal physicochemical model, in which the Langmuir isotherm and the law of mass action are used. Various modifications of this model allowed describing reactive sputtering processes in more complex cases when the sputtering unit included a hot target or a sandwich one.