A review of studies on the electroplastic effect on the deformation process in various conductive materials and alloys for the last decade has been carried out. Aspects, such as the mode and regimes of electric current, the practical methods of its introduction into materials with different deformation schemes, features of deformation behavior accompanied by a pulsed current of different materials, structural changes caused by the combined action of deformation and current, the influence of structural features on the electroplastic effect, changes in the physical, mechanical, and technological properties of materials subjected to plastic deformation under current, possible mechanisms and methods of physical and computer modeling of the electroplastic effect, and potential and practical applications of the electroplastic effect are considered. The growing research interest in the manifestation of the electroplastic effect in such new modern materials as shape-memory alloys and ultrafine-grained and nanostructured alloys is shown. Various methods of modeling the mechanisms of electroplasticity, especially at the microlevel, are becoming the most realistic approach for the prediction of the deformation behavior and physical and mechanical properties of various materials. Original examples of the practical application of electropulse methods in the processes of drawing, microstamping, and others are given.