Alloy blocks with different TiC content were designed, and Mo2FeB2 cermets were prepared by carbon arc surfacing process. The interaction law of TiC content and the microstructure, phase, composition, hardness and wear resistance of the cladding were studied in detail by the combination of experiment and theoretical analysis. On the other hand, the phase transition process of the weldpool is theoretically analyzed by thermodynamic calculation method. XRD test results show that in addition to Mo2FeB2 synthesized in situ, the cladding also forms phases such as TiC, CrB, MoB and Fe-Cr. The number of Mo2FeB2 hard phases gradually increases when TiC content varies from 0% to 15%. The average microhardness of the cladding with 0%, 5%, 10%, and 15% TiC was 992 HV0.5, 1035 HV0.5, 1018 HV0.5 and 689 HV0.5, respectively, with 5% TiC being the largest. Moreover, the cladding with 5% TiC content has excellent wear resistance, which is 14.6 times that of the substrate.