A method for producing nanocomposites of unsaturated polyester resins (UPR) based on recycled polyethylene terephthalate (PET) as a matrix has been proposed. The upcycling method involves three successive stages: (1) oligoesters synthesis, (2) simultaneous glycolysis and interchain exchange of oligoesters with PET, (3) interaction of the obtained resins with glycol and maleic anhydride. UPRs were characterized by FTIR spectroscopy and gel permeation chromatography. The mechanical properties of nanocomposites obtained on the basis of these resins and titanium dioxide have been investigated. It has been shown that 1,2-propylene glycol units, despite their lower reactivity, significantly improve the properties of UPR. The most promising nanocomposite sample exhibited tensile strength 112.62 MPa, elongation at break 157.94%, and Young’s modulus 29.95 MPa. These results indicate that the proposed method made it possible to obtain nanocomposites with high mechanical properties based on recycled PET thus allowing one to create a valuable product from waste.