Because a large time spread in most crack initiation tests makes it a daunting task to predict the initiation time of cracking, a probabilistic model, such as the Weibull distribution, has been usually employed to model it. In thiscase, although it might be anticipated to develop a more reliable cracking model under ideal cracking test conditions (e.g., large number of specimen, narrow censoring interval, etc.), it is not straightforward to quantitatively assess the effects of these experimental conditions on model estimation uncertainty. Therefore, we studied the effects of some key experimental conditions on estimation uncertainties of the Weibull parameters through the Monte Carlo simulations. Simulation results suggested that the estimated scale parameter would be more reliable than the estimated shape parameter from the tests. It was also shown that increasing the number of specimen would be more efficient to reduce the uncertainty of estimators than the more frequent censoring.