The effect of an alternative source of silica, based on class F fly ash mixed with blast furnace slag and activated by rice husk ash (RHA), to produce concrete exposed to marine environments was evaluated. Four mixtures activated by the combination of 85% NaOH 14M + 15% RHA were manufactured to achieve a liquid/solid ratio of 0.20. Fly ash was incorporated into the steel slag mixture at addition percentages of 20, 40, 60, and 80%, and evaluated at 28, 900, and 1800 days for pore and chloride ion absorption. In general, including rice husk ash in the mixture of fly ash and steel slag significantly affected mechanical performance because it was possible to obtain concrete with high mechanical resistance. Concerning the durability evaluation, the effect of the activator generated by rice husk ash was observed, and the increase in steel slag added to the cementitious samples improved the capacity of the material to resist the penetration and diffusion of chloride ions.