Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The fate of key species, such as the barnacle Amphibalanus improvisus, in the course of global change is of particular interest since any change in their abundance and/or performance may entail community-wide eVects. In the Xuctuating Western Baltic, species typically experience a broad range of environmental conditions, which may preselect them to better cope with climate change. In this study, we examined the sensitivity of two crucial ontogenetic phases (naupliar, cypris) of the barnacle toward a range of temperature (12, 20, and 28°C) and salinity (5, 15, and 30 psu) combinations. Under all salinity treatments, nauplii developed faster at intermediate and high temperatures. Cyprid metamorphosis success, in contrast, was interactively impacted by temperature and salinity. Survival of nauplii decreased with increasing salinity under all temperature treatments. Highest settlement rates occurred at the intermediate temperature and salinity combination, i.e., 20°C and 15 psu. Settlement success of "naive" cyprids, i.e., when nauplii were raised in the absence of stress (20°C/15 psu), was less impacted by stressful temperature/ salinity combinations than that of cyprids with a stress history. Here, settlement success was highest at 30 psu particularly at low and high temperatures. Surprisingly, larval survival was not highest under the conditions typical for the Kiel Fjord at the season of peak settlement (20°C/15 psu). The proportion of nauplii that ultimately transformed to attached juveniles was, however, highest under these "home" conditions. Overall, only particularly stressful combinations of temperature and salinity substantially reduced larval performance and development. Given more time for adaptation, the relatively smooth climate shifts predicted will probably not dramatically aVect this species.
The fate of key species, such as the barnacle Amphibalanus improvisus, in the course of global change is of particular interest since any change in their abundance and/or performance may entail community-wide eVects. In the Xuctuating Western Baltic, species typically experience a broad range of environmental conditions, which may preselect them to better cope with climate change. In this study, we examined the sensitivity of two crucial ontogenetic phases (naupliar, cypris) of the barnacle toward a range of temperature (12, 20, and 28°C) and salinity (5, 15, and 30 psu) combinations. Under all salinity treatments, nauplii developed faster at intermediate and high temperatures. Cyprid metamorphosis success, in contrast, was interactively impacted by temperature and salinity. Survival of nauplii decreased with increasing salinity under all temperature treatments. Highest settlement rates occurred at the intermediate temperature and salinity combination, i.e., 20°C and 15 psu. Settlement success of "naive" cyprids, i.e., when nauplii were raised in the absence of stress (20°C/15 psu), was less impacted by stressful temperature/ salinity combinations than that of cyprids with a stress history. Here, settlement success was highest at 30 psu particularly at low and high temperatures. Surprisingly, larval survival was not highest under the conditions typical for the Kiel Fjord at the season of peak settlement (20°C/15 psu). The proportion of nauplii that ultimately transformed to attached juveniles was, however, highest under these "home" conditions. Overall, only particularly stressful combinations of temperature and salinity substantially reduced larval performance and development. Given more time for adaptation, the relatively smooth climate shifts predicted will probably not dramatically aVect this species.
We studied the communities of the invasive Balanus improvisus and native Cerastoderma glaucum populations in the south-western Caspian Sea. The massive movement of live Bivalvia attached to Cirripedia colonies along the studied coastline strengthens the hypotheses asserting the possible negative effects of exotic species on endemic species. Different live stages of both animals including meroplankton and macro-invertebrates were considered in the analysis. Bivalvia larvae showed a downward trend in population, in contrast with an upward trend of Cirripedia larvae from 1996 to 2013. The abundance of C. glaucum decreased west to east along the sea shore in contrast with increasing biomass of B. improvisus. Both Bivalvia and Cirripedia larvae did not show any overlapping temporal abundance. The Cirripedia larvae showed its highest abundance in winter while the bloom of Bivalvia larvae occurred in April and May during 2004–2013. The biomass of B. improvisus reported in this study was higher than those reported for the northern parts and for the middle parts. Distribution patterns of both species were described based on temperature, salinity gradient and local nutrient content. A non-linear growth model of Bivalvia showed the short-term effects of Cirripedia on Bivalvia growth. The controversy between the effects of Cirripedia on the movement of two different Cardiidae (C. glaucum, which is affected by the presence of B. improvisus, and Adacna vitrea with no attached Cirripedia) highlights the contributing role of several other factors including ecosystem degradation.
This datasheet on Amphibalanus improvisus covers Identity, Overview, Distribution, Dispersal, Diagnosis, Biology & Ecology, Environmental Requirements, Natural Enemies, Impacts, Uses, Prevention/Control, Further Information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.