“…In order to address the shortcomings of gradient-based optimization methods, global optimization approaches such as Simulated Annealing, Evolutionary Algorithms, and Evolution Strategy were proposed. Some of the successful methods are such as the ensemble Kalman filter (Van Leeuwen, 1999;Evensen, 2003;Haugen, et al, 2006;Aanonsen, et al, 2009;Hanea, et al, 2010;Szklarz, et al, 2011), Neighborhood Algorithm (Christie, et al, 2002;Stephen, et al, 2006;Rotondi, et al, 2006;Subbey, et al, 2003), Genetic Algorithms (Erbas, et al, 2007) (Castellini, 2005), Scatter search (Sousa, 2007), Tabu Search (Yang, et al, 2007), Hamiltonian Monte Carlo (HMC) (Mohamed, et al, 2009), Particle Swarm Optimization (PSO) (Eberhart, et al, 2001;Mohamed, et al, 2009;2010;Rwechungura, et al, 2011;Kathrada, 2009) Ant Colony Optimization (ACO) algorithm (Razavi, et al, 2008;2010), Markov chain Monte Carlo (Maucec, 2007), and Chaotic Optimization (Mantica, 2002).…”