Zinc (Zn) has a vast number of functions in plant metabolism and consequently Zn deficiency has a range of effects on plant growth. There are a number of different possible mechanisms by which plants tolerate Zn deficiency (generally expressed as Zn efficiency), such as Zn uptake, translocation to the shoot and physiological efficiency. However, there have been no direct comparisons of the relative importance of these possible mechanisms of Zn efficiency in a large set of genotypes of contrasting Zn efficiency. Soil and solution culture studies were conducted to examine the relative contribution of different mechanisms of Zn efficiency at the whole plant level in bread and durum wheat during early vegetative stage. Zn treatments were 0, 0.05, 0.1 and 1 mg/kg soil in the soil culture, and nil in the solution culture. Visual symptoms of Zn deficiency, dry matter production, Zn uptake, Zn distribution between roots and shoots, Zn utilization in roots and shoots and Zn remobilisation from the seed into growing parts were examined. Significant genotypic differences were observed in most criteria and responses differed with external Zn supply. The results of the present study suggest that while there are a number of different mechanisms contributing to Zn efficiency, uptake is the major mechanism and the effect of this is modified by the physiological efficiency within the shoot. Root:shoot partitioning was not strongly associated with Zn efficiency and seed Zn remobilisation was not linked to Zn efficiency. Visual symptoms of the severity of Zn deficiency was a good predictor of Zn efficiency and was correlated with Zn uptake.