Organic/inorganic hybrid templates, i.e., aluminium oxide (Al2O3) nanoparticles grafted with poly(oxyethylene) methacrylate, Al2O3‐POEM, are synthesized via surface‐initiated atom transfer radical polymerization (ATRP), as confirmed by Fourier transform‐infrared spectroscopy (FT‐IR) and thermogravimetric analysis (TGA). Upon combining the Al2O3‐POEM with titanium(IV) isopropoxide (TTIP), hydrophilic TTIP is selectively confined in the hydrophilic POEM chains through hydrogen bonding interactions. Following the calcination at 450 °C and the selective etching of Al2O3 with NaOH, the OM‐TiO2 films with high surface areas, good interconnectivity, and anatase phase are obtained. The solid‐state dye‐sensitized solar cells (ssDSSCs) fabricated with OM‐TiO2 photoelectrodes and a polymerized ionic liquid (PIL) show a high energy conversion efficiency of 7.3% at 100 mW cm−2, which is one of the highest values for ssDSSCs. The high cell performance is due to the well‐organized structure, resulting in improved dye loading, excellent pore filling of electrolyte, enhanced light harvesting, and reduced charge recombination.