2020
DOI: 10.21203/rs.2.21336/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Effect of Sequence Padding on the Performance of Protein-Based Deep Learning Models

Abstract: Background The use of raw amino acid sequences as input for protein-based deep learning models has gained popularity in recent years. This scheme obliges to manage proteins with different lengths, while deep learning models require same-shape input. To accomplish this, zeros are usually added to each sequence up to a established common length in a process called zero-padding. However, the effect of different padding strategies on model performance and data structure is yet unknown. Results We analysed the impa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?