Background
Recently, clinical studies have shown the protective effects of sodium glucose co-transporter2 (SGLT2) inhibitors against progression of diabetic nephropathy, but the underlying molecular mechanisms remain unclear.
Methods
Diabetic mice were prepared by injecting nicotinamide and streptozotocin, followed by high-sucrose diet feeding (NA/STZ/Suc mice). The SGLT2 inhibitor canagliflozin was administered as a 0.03% (w/w) mixture in the diet for 4 weeks. Then, various parameters and effects of canagliflozin on diabetic nephropathy were investigated.
Results
Canagliflozin administration to NA/STZ/Suc mice normalized hyperglycemia as well as elevated renal mRNA of collagen 1a1, 1a2, CTGF, TNFα and MCP-1. Microscopic observation revealed reduced fibrotic deposition in the kidneys of canagliflozin-treated NA/STZ/Suc mice. Interestingly, the protein level of Pin1, reportedly involved in the inflammation and fibrosis affecting several tissues, was markedly increased in the NA/STZ/Suc mouse kidney, but this was normalized with canagliflozin treatment. The cells showing increased Pin1 expression in the kidney were mainly mesangial cells, along with podocytes, based on immunohistochemical analysis. Furthermore, it was revealed that canagliflozin induced AMP-activated kinase (AMPK) activation concentration-dependently in CRL1927 mesangial as well as THP-1 macrophage cell lines. AMPK activation was speculated to suppress mesangial cell proliferation and exert anti-inflammatory effects in hematopoietic cells.
Conclusion
Therefore, we can reasonably suggest that normalized Pin1 expression and AMPK activation contribute to the molecular mechanisms underlying SGLT2 inhibitor-induced suppression of diabetic nephropathy, possibly at least in part by reducing inflammation and fibrotic change.