Abstract. We investigate the stability of slowly smearing phase boundary that appears at the contact of two miscible liquids. A hydrodynamic flow is imposed along the boundary. The aim is to find out whether the slow diffusive smearing of a boundary can be overrun by faster mixing. The phase-field approach is used to model the evolution of the binary mixture. The linear stability in respect to 2D perturbations is studied. If the heavier liquid lies above the lighter liquid, the interface is unconditionally unstable due to the Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The imposed flow accelerates the growth of the long-wave modes and suppresses the growth of the short-wave perturbations. Viscosity, diffusivity and capillarity reduce the growth of perturbations. If the heavier liquid underlies the lighter one, the interface can be stable. The stability boundaries are defined by the strength of gravity (density contrast) and the intensity of the imposed flow. Thinner interfaces are usually characterised by larger zones of instability. The thermodynamic instability, identified for the thicker interfaces with the thicknesses greater than the thickness of a thermodynamically equilibrium phase boundary, makes such interfaces unconditionally unstable. The zones of instability are enlarged by diffusive and capillary terms. Viscosity plays its stabilising role.
PACS