It is shown that the short pulse durations (0.1-10 ns) in laser shock compression ensure a rapid decay of the pulse and quenching of the shocked sample in times that are orders of magnitude lower than in conventional explosively driven plate impact experiments. Thus, laser compression, by virtue of a much more rapid cooling, enables the retention of a deformation structure closer to the one existing during shock. The smaller pulse length also decreases the propensity for localization.