The study describes the theoretical background and technological aspects of the post-weld explosive treatment of high-strength aluminum alloy FSW joints. Although FSW allows to effective join high-strength aluminum alloys, the heat generated during the process causes undesirable changes in the strengthening phase, giving a joint efficiency of about 80%. The load-carrying capabilities of these joints can be increased via post-weld treatment (e.g. shot peening, laser shock peening). The new, potential post-weld treatment that is presented in this paper is based on the affection of the welded joint by a shock wave generated during the detonation of explosive material. Such post-weld explosive treatment would result in the hardening of the low-hardness zone, which often determines the mechanical properties of precipitation-hardened aluminum alloy FSW joints. Studies show that explosive welding of annealed aluminum alloys increases their microhardness by about 25% as the result of a high-velocity collision. If a similar effect can be achieved in explosive hardening, the microhardness of the low-hardness zone will increase entailing an improvement of entire joint mechanical properties. The variety of explosives materials used in metalworking (covering the values of detonation velocity from about 2000 m/s to 8000 m/s) and different systems for shock-wave affection gives many technological possibilities. In this work are discussed two different explosive hardening systems: with direct placement of explosive material on a treated welded plate and with an additional driven plate, which provides a higher pressure impulse. Considering that affecting of high amplitude shock wave introduces defects into the structure and decreases residual stresses in the welded joints, the application of an appropriate technological system creates a potential for improving the load-carrying capacities of discussed joints, especially in a condition of cyclic loading.