Shot-peening of the surface of steel prior to oxidation can have a beneficial effect. Shot-peening can improve the oxidation resistance by introducing a localised plastic deformation in the near surface region resulting in an increase of the dislocation density. These dislocations can act in Cr-containing steels as fast diffusion paths for Cr promoting the formation of protective Cr-oxides. However, the effect of shot-peening has some limitations such as working temperature and microstructure. It has different effects on austenitic steels and ferritic martensitic steels. The effect of shot-peening can become futile due to recovery and recrystallisation of the alloy when subjected to higher temperatures for longer periods. In the present work, the main emphasis is put on the type of dislocation arrangement promoting the positive effect on the oxidation behaviour. Dislocation engineering was applied on shot-peened samples by means of some pre-annealing procedures resulting in a recovery process. During the process, dislocations were assumed to rearrange and form certain combinations nearer to the alloy grain boundaries. These arrays of dislocations can result in different oxidation behaviour. In the present study, 18 wt% Cr and 12 wt% Cr steels were shot-peened and vacuum annealed at 750 C for 1 h, 2 h, 3 h, 5 h and 15 h. Subsequently these steels were oxidised at 750 C. The mass gain in all cases is different for both steels, and in the case of both 12 wt% Cr and 18 wt% Cr steels the best oxidation resistance was achieved for the shot-peened þ 1 h pre-annealed sample.