The biogenic synthesis of silver nanoparticles (AgNPs) is an important step in developing eco‐friendly and environmentally stable tools for ameliorating crop growth. In the current study, AgNPs were synthesized using Funaria hygrometrica and characterized using ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X‐ray diffraction (XRD). The UV spectrum showed an absorption peak at 450 nm. SEM revealed an irregular and spherical morphology, FTIR spectroscopy indicated the presence of various functional groups, while XRD displayed peaks at 45.24°, 38.17°, 44.34°, 64.54°, and 57.48° 2θ. The effects of the F. hygrometrica‐mediated AgNPs on maize growth and germination were assessed at 0, 100, 300, and 500 ppm. The germination percentage and relative germination rate were increased to 95% ± 1.83% and 100% ± 2.48% at 100 ppm of synthesized AgNPs and then declined at 300 and 500 ppm. The length, fresh weight, and dry matter of the root, shoot, and seedlings were highest at 100 ppm NPs. The plant height, root length, and dry matter stress tolerance indices were also the highest (112.3%, 118.7%, and 138.20% compared with the control) at 100 ppm AgNPs. Moreover, the growth of three maize varieties, that is, NR‐429, NR‐449, and Borlog, were assessed at 0, 20, 40, and 60 ppm F. hygrometrica‐AgNPs. The results indicated the highest root and shoot length at 20 ppm AgNPs. In conclusion, seed priming with AgNPs enhances the growth and germination of maize and can ameliorate crop production globally.
Research Highlights
Funaria hygrometrica Hedw.‐mediated AgNPs were synthesized and characterized.
Biogenic AgNPs influenced the growth and germination of maize seedlings.
All growth parameters were highest at 100 ppm synthesized NPs.