Based on finite element simulation analysis, laminated ceramic tool materials with different structures were designed and the effect of laminated structure on tool state was investigated. Residual stresses in ceramic tool materials increase with the number of layers and layer–thickness ratio. Based on the simulation results, SiAlON-SiC-SiCw/SiAlON-Al2O3 ceramic tool materials (SCWAs) were prepared using the spark plasma sintering process, and the influence of residual stress on the mechanical properties and microstructure of laminated ceramic tool materials was studied. The mechanical properties of ceramic materials were significantly improved under the effect of residual stresses. The fracture toughness of SCWA4 with 7 layers and a layer–thickness ratio of 6 was 6.02 ± 0.19 MPa·m1/2, and the front and side flexural strengths were 602 ± 19 MPa and 595 ± 17 MPa, 36.3% and 39.0% higher than homogeneous SiAlON ceramics, respectively.