The article analyzes the role of hydrogen bonds and supramolecular structures in enzyme catalysis and model systems. Hydrogen bonds play a crucial role in many enzymatic reactions. However, scientists have only recently attempted to harness the power of hydrogen bonds in homogeneous catalytic systems. One of the newest directions is associated with attempts to control the properties of catalysts by influencing the “second coordination sphere” of metal complexes. The role H-bonding, and the building of stable supramolecular nanostructures due to intermolecular H-bonds, based on catalytic active heteroligand iron (Fe) or nickel (Ni) complexes formed during hydrocarbon oxidations were assessed via the AFM (Atomic-force microscopy) method, which was proposed and applied by authors of this manuscript. Th is article also discusses the roles of hydrogen bonds and supramolecular structures in oxidation reactions catalyzed by heteroligand Ni and Fe complexes, which are not only effective homogeneous catalysts but also structural and functional models of Oxygenases.