Predicting the effects of increased ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion on temperate desert ecosystems requires better knowledge of the ecophysiological response of common moss species. The aim of the current work was to determine whether elevated UV-B radiation affected photosynthetic performance and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. In laboratory experiments, Bryum argenteum and Didymodon vinealis, which show microdistributions and are dominant in soil crusts at the Tengger Desert, Northern China, were subjected to four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m -2 for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. The results showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), pigment contents, soluble protein contents, and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results indicated that B. argenteum was probably more sensitive to supplementary UV-B radiation than D. vinealis. Therefore, we propose the use of B. argenteum crusts as a bioindicator of responses to elevated UV-B radiation.