This study investigates the impact of incorporating carboxymethyl tamarind gum (CMT) at varying concentrations (0 %–3 % w/w) into whole wheat bread (WWB) by analyzing several physicochemical properties. The results indicate that the loaf height of CMT2 (1 % CMT) increased by 8 % compared to the control (CMT0, without CMT) (p < 0.05), with more evenly distributed pores observed in CMT2. CMT formulations showed higher moisture content and lower impedance values than CMT0. Color analysis revealed that CMT2 had a 16 % higher L* value and a 19 % lower browning index. Microscopic analysis indicated glossier structures in CMT-containing samples, with CMT2 displaying the lowest hardness (7.46 N ± 0.11) (p < 0.05), 21 % lower than CMT0. Microbial analysis showed that CMT2 had the lowest total viable count (TVC) at 81 ± 6.55 CFU/g (p < 0.05) after 2 days, 68 % lower than CMT0. Overall, CMT2 demonstrated superior characteristics and extended shelf life.