The influence of electropulsing treatment (EPT) parameters on the static recrystallization (SRX) microstructure in a cold-deformed Ni-based superalloy was investigated. During EPT, both the volume fraction of SRX grains and the average grain size increased with the increasing EPT temperature, which was attributed to the thermal effect and athermal effect induced by EPT. The mobility of SRX grain boundaries was promoted at the higher temperature due to the thermal effect, while the nucleation rate would be increased by EPT through decreasing the thermodynamic barrier. The formation of parallel dislocations caused by electron wind force could also play an indirect role in promoting SRX process. Moreover, the volume fraction of SRX grains increased significantly with the extension of EPT time at 700 °C, while the EPT time had a trivial effect on the average grain size. In addition, the sufficient deformation was essential to the occurrence of SRX behavior during EPT, and the localized Joule heating effect could promote the SRX behavior in the samples with the larger strains. Besides that, the influence of twining and carbides on the SRX behaviors was also investigated.