A solar absorption cooling system consisting in a flat plate collector, thermal energy storage tank, and absorption chiller is analyzed in this work. A dimensionless model is developed and used to determine the influence of different parameters such as tank size, solar collector area, chiller size, cooling load, cooling temperature, heat loss, and mass flow rates on the performance. From the analysis, smaller solar collector areas are required for lower cooling loads and smaller tank volumes. A specific cooling load of 1E-5 will require a specific solar collector area between two to six times larger, depending on the initial tank temperature, than the area required for a baseline system that considers typical commercial design and operation parameters. A similar behavior was observed for the specific tank volume. For the baseline system, the minimum specific area of the collector of 9.57 is achieved for an initial tank temperature of 1.19. For a cooling load of 1E-5, the optimum initial tank temperature will be 1.11 that results in a minimum specific solar collector area of 25.26. A specific tank volume of 4E-1 will also have an optimum initial tank temperature of 1.11 that minimizes the specific solar collector area to a value of 28.18. The approach and analysis in this work can be used to determine design parameters for solar absorption cooling systems based on a proper relation among system's dimensions to achieve optimum operation.