Biodegradable implants show great potential in many areas of medicine, and have already demonstrated success in simple applications such as sutures. For more complex devices, such as vascular stents, there are considerable challenges associated with the use of biodegradable materials. These materials typically are weaker than the metals currently used to construct stents, so it is difficult to ensure sufficient strength to prop open the artery and alleviate symptoms acutely. It is even more challenging to design a stent that provides structural support for a predictable, appropriate time to facilitate artery healing. These challenges are evident when one considers that there are no biodegradable stents on the US market despite more than 20 years of development efforts. This review summarizes previous efforts at implementing biodegradable stents, discusses the specific challenges involved, and presents a recently developed biodegradable material modeling framework that can benefit this exciting field.