2022
DOI: 10.1007/s10712-022-09743-y
|View full text |Cite
|
Sign up to set email alerts
|

Effect of Stress on Wave Propagation in Fluid-Saturated Porous Thermoelastic Media

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 17 publications
(3 citation statements)
references
References 39 publications
0
2
0
1
Order By: Relevance
“…Glubokovskikh et al (2016) generalized and simplified the formulation for fluid modulus imbedded in the Gurevich model to account for the solid and viscoelastic pore filler. However, the influence of confining pressure on rock mechanic properties or pore geometry is not taken into account in the classic WIFF models above mentioned, although the confining pressure exists ubiquitously in the subsurface (Chen et al, 2023;Zong et al, 2023).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Glubokovskikh et al (2016) generalized and simplified the formulation for fluid modulus imbedded in the Gurevich model to account for the solid and viscoelastic pore filler. However, the influence of confining pressure on rock mechanic properties or pore geometry is not taken into account in the classic WIFF models above mentioned, although the confining pressure exists ubiquitously in the subsurface (Chen et al, 2023;Zong et al, 2023).…”
Section: Introductionmentioning
confidence: 99%
“…This theory suggests that the wave dissipation is fully induced by the global fluid flow in stiff pores. Under this scientific hypothesis, the Biot theory predicted the existence of slow P wave in fluid‐saturated porous media, in addition to the conventional fast P wave and S wave existing in the isotropic single‐phase media (Zong et al., 2023). Afterwards, the slow P wave was observed in the water‐saturated sintered glass beads in the experiment at the ultrasonic frequency (Plona, 1980).…”
Section: Introductionmentioning
confidence: 99%
“…)。 地应力是储存在岩石中弹性应变能的量度,其对固有各向异性和次生各向异性的产生均有一定影响, 但两者产生机制不同。对于固有各向异性,地应力改变岩石微粒排列方向和晶体发育方向,从而造成各向 异性现象 (Liu 和 Martinez, 2012)。而对于已经发育完全的岩石,再次受到地应力会使岩石中原本存在的微裂 缝张开或闭合,从而产生次生各向异性 (Nur 和 Simmons, 1969;Nur, 1971)。在不考虑波长的情况下,地下岩 石所存在的各向异性是固有各向异性和次生各向异性共同作用的结果。在沉积岩中,次生各向异性主要由 岩石上覆重力产生,而在特定构造发育的地形(如断层)中,水平地应力可能大于上覆重力,甚至是其数十倍 (Sarkar 等, 2003)。在研究地应力与各向异性之间的关系时,不少学者都发现单一方向的地应力所引起的次 生各向异性具有单一方向对称性,且地应力方向即为各向异性对称轴方向 (Rasolofosaon, 1998)。根据这一规 律,Sarkar 等(2003)和 Prioul 等( 2004)通过非线性声弹性理论 (Thurston 和 Brugger, 1964) (Nur 和 Simmons, 1969;Zamora 和 Poirier, 1990;Sayers 等, 1990;Yin, 1992;Sarout 等, 2007;Sarout 和 Gué guen, 2008;Dewhurst 等, 2011)。 地震各向异性响应特征的研究作为储层预测和评价的重要手段,可通过五维地震数据获得储层的弹性 和各向异性属性信息,预测地下实际裂缝性质,对裂缝性油气藏的勘探和开发具有重要意义 (王赟等, 2008;印兴耀等, 2013;陈怀震等, 2015;薛姣等, 2015;潘新朋等, 2018;刘子淳等, 2019;潘新朋和张广智, 2019;Zhang 等, 2019;刘圣彪等, 2021;Cheng 等, 2022;印兴耀等, 2022;Ding 等, 2023;Pan 和 Zhao, 2024)。对于非 常规页岩等裂缝性储层而言,了解和认识地下应力状态对于指导页岩油气开发井网布置和调整压裂改造方 案具有重要意义 (Zoback, 2010)。相比于各向同性地应力预测模型,考虑各向异性响应特征的预测模型更能 反映岩石的原位地应力条件 (Savage 等, 1992;Gray 等, 2012;马妮等, 2017;Pan 等, 2017) 频带内孔隙流体对地震波传播特征的影响 (Gurevich, 2003;Huang 等, 2015;潘新朋和张广智, 2019)。而以含 流体多孔介质的 Biot 理论 (Biot, 1956a(Biot, , 1956b)为基础,众多学者进一步完善了孔隙弹性理论,提出了多种不 同尺度的孔隙弹性波动理论模型来描述地震波在含流体多孔介质中的频散、衰减以及频变各向异性特征 (Dvorkin 和 Nur, 1993;Parra, 1997;Yang 和 Zhang, 2000, 2002Chapman, 2009;唐晓明, 2011;...…”
unclassified