Long-range entanglement in quantum spin liquids (QSLs) leads to novel low-energy excitations with fractionalized quantum numbers and (in two dimensions) statistics. Experimental detection and manipulation of these excitations present a challenge particularly in view of diverse candidate magnets. A promising probe of fractionalization is their coupling to phonons. Here, we present Raman scattering results for the S = 1/2 honeycomb iridate Cu 2 IrO 3 , a candidate Kitaev QSL with fractionalized Majorana fermions and Ising flux excitations. We observe anomalous low-temperature frequency shift and linewidth broadening of the Raman intensities in addition to a broad magnetic continuum, both of which, as we derive, are naturally attributed to the phonon decaying into itinerant Majoranas. The dynamic Raman susceptibility marks a crossover from the QSL to a thermal paramagnet at ∼120 K. The phonon anomalies below this temperature demonstrate a strong phonon-Majorana coupling. These results provide evidence of spin fractionalization in Cu 2 IrO 3 .