The results of a study of the mechanism and kinetics of metallic material fracture (dual phase steels, binary Zr-2,5Nb and multicomponental Zr-1,2Sn-1Nb-0,3Fe alloys, reinforced surface layers and protective coatings, multifilamentary Nb3Sn and Nb-Ti based superconductors and HTSC-based composition wires) are given. The quantity fracture analysis is based on measurements of acoustic impulse peak (maximum) amplitudes by non-resonance sensors for linear measurement of acoustic shifts and crack parameters measurement. The developed methods of absolute calibration of AE equipment were checked by testing various types of materials and crack parameter measurements in laps and fractures. The calibration dependencies for quantity measurements are shown. The possibilities of AE for quality analysis and for characterizing of materials in the process of various mechanical tests and in the process of pressure processing with the help of a developed experimental computerized AE system are demonstrated.