This study investigated changes in the sound absorption coefficients of three anatomical sections of cubed spruce (Picea sitchensis), Douglas fir (Pseudotsuga menziesii), and larch (Larix kaempferi) after microwave treatment. Microwave treatment at 1000 W and 2.4 GHz for 20 min increased the sound absorption coefficients (at 2000–5000 Hz) of spruce by 6.9% in the transverse section, 20.0% in the radial section, and 31.7% in the tangential section. The sound absorption coefficients of Douglas fir increased by 28.9% in the transverse section, 19.1% in the radial section, and 50.0% in the tangential section. Larch coefficients increased by 16.7% in the transverse section, 37.2% in the radial section, and 38.8% in the tangential section. The sound absorption coefficients of the softwoods differed according to species and anatomical plane after microwave treatment. It was concluded that changes in the measured sound absorption coefficient indicate alteration in the pore structure of wood, which can affect in turn wood permeability and impregnation. These data will be helpful for predicting the permeability and impregnation of wood after microwave treatment.