In the present study, we investigated the velocity profile over the carotid bifurcation in ten healthy volunteers by combining velocity measurements from two imaging modalities (PC-MRI and US-Doppler) and hemodynamic modeling in order to determine the optimal combination for the most realistic velocity estimation. The workflow includes data acquisition, velocity profile extraction at three sites (CCA, ECA and ICA), the arterial geometrical model reconstruction, a mesh generation and a rheological modeling. The results showed that US-Doppler measurements yielded higher velocity values as compared to PC-MRI (about 26% shift in CCA, 52% in ECA and 53% in ICA). This implies higher simulated velocities based on US-Doppler inlet as compared to simulated velocities based on PC-MRI inlet. Overall, PC-MRI inlet based simulations are closer to measurements than US-Doppler inlet based simulations. Moreover, the measured velocities showed that blood flow keeps a parabolic sectional profile distal from CCA, ECA and ICA, while being quite disturbed in the carotid sinus with a significant decrease in magnitude making this site very prone to atherosclerosis.