The effect of surfactant on the thickness of a thin film bounded by a solid surface and a moving liquid drop was investigated. We proposed a model so that parameters from the liquid drop can be stated in a parameter that acts as normal pressure to the thin film. Using the lubrication approximation, the model was reduced to a set of nonlinear partial differential equations in terms of the film thickness and surfactant concentration. Since we were interested in the role of the surfactant in lifting up the drop, we assumed that the density of the drop is higher than the density of the thin film. Numerically, the results show that the presence of the surfactant tends to delay the decrease of the film thickness insignificantly. However, when the surfactant was added into the system, it tends to significantly increase the film thickness for a certain range value of the normal pressure.