There is no study implying the effect of plant lectins on insect immune elements in both challenged and nonchallenged conditions with entomopathogenic agents. Lectins may bind to immune receptors on the surface of insect hemocytes, thus inducing or even disabling common immune functions including hemocyte counts, nodulation/encapsulation, phenoloxidase activity, and synthesis of antimicrobial peptides. In the present study, effect of Polygonum persicaria L. agglutinin (PPA) on immune responses of Helicoverpa armigera Hübner was investigated by feeding artificial diet treated to the larvae. Subsequently hemocyte count and expression of some immune-related genes were considered for analyses. The two groups of larvae including control and PPA-treated (1%) were divided into four subgroups of intact, Tween-80 injected, latex-bead injected and Beauveria bassiana-injected. Except for intact larvae, the highest numbers of total and differential hemocyte counts were recorded 12 hr postinjection, however, the PPA-fed larvae showed a significantly lower hemocyte counts compared to control.The number of nodules in PPA-fed larvae was significantly lower than control, but the injected larvae of both control and PPA showed the highest nodulation 24 hr postinjection.Although the highest activity of phenoloxidase was observed 12 and 24 hr postinjection but its activity significantly decreased in PPA-fed larvae compared to control. Gene expression of antimicrobial peptides including attacin, Arch. Insect Biochem. Physiol. 2019;101:e21543.wileyonlinelibrary.com/journal/arch