The effects of modified atmosphere packaging (MAP) on the growth and spoilage characteristics of Pseudomonas lundensis LD1 and Shewanella putrefaciens SP1 in chilled chicken at 0–10 °C were studied. MAP inhibited microbial growth, TVB-N synthesis, and lipid oxidation. The inhibitory effect of MAP became more significant as the temperature decreased. The kinetic models to describe the growth of P. lundensis LD1 and S. putrefaciens SP1 at 0–10 °C were also established to fit the primary model Gompertz and the secondary model Ratkowsky. The models had a high degree of fit to describe the growth of dominant spoilage bacteria in chilled chicken. The observed numbers of P. lundensis LD1 and S. putrefaciens SP1 at 2 °C were compared with the predicted numbers, and the accuracy factor and bias factor ranged from 0.93 to 1.14. These results indicated that the two models could help predict the growth of P. lundensis and S. putrefaciens in chilled chicken at 0–10 °C. The analyzed models provide fast and cost-effective alternatives to replace traditional culturing methods to assess the influence of temperature and MAP on the shelf life of meat.