Seed priming is currently a wide used commercial process that accelerates the germination rate and improves seedling uniformity in several crops. A laboratory study was conducted to evaluate the effect of grain priming treatments on barley grain germination and seedling growth under drought stress imposed by PEG-6000. The experiment was performed employing a factorial completely randomized block design with four levels of drought stress (0,10,20 and 30% PEG6000) and 14 priming treatments (dry, hydropriming, 5, 10, 15% PEG-6000; 500, 1000, 1500 mg/l KNO 3 ; 25, 50, 75 mg/l thiamin; 50, 100, 150 mg/l sodium metasilicate) with five replications for each treatment. Germination percentage, germination index, energy of germination, mean germination time, seedling vigor, seedling length, 10 seedling fresh and dry weights were measured below the experimental conditions. Variance analysis results (ANOVA) showed extremely significant (p<0.05) variations between treatments in all traits. It had been discovered that increasing PEG concentrations up to 30% significantly decrease germination criteria and seedling growth traits and that priming treatments in most cases significantly increased all germination and seedling parameter. The most effective in this regard was 1000 mg/l potassium nitrate as compared with untreated control treatment. Priming treatments in most cases mitigates PEG effects as a major increase, particularly with 1000 mg/l potassium nitrate. It is concluded that potassium nitrate at 1000 mg/l is helpful to enhance drought tolerance of barley grain germination and seedling growth.