At or above room temperature, metal electrodeposits often feature coarse grains, uneven microstructure and high roughness with abnormal bulges. In this study, copper electrodeposits with abnormal properties were prepared in a sulfate bath at a low temperature near the freezing point of the electrolyte. The results showed that the average grain size of the copper featured an “increase-decrease” trend while decreasing the temperature form 5 °C to −5 °C, yielding a trend from 0.25 μm to 1 μm and then to 0.6 μm. In the early stage, the temperature does not change the three-dimensional continuous nucleation mode of deposited copper. When the nucleus density reaches saturation, the polarization caused by overpotential will act on the respective nucleation and crystal growth process twice, and finally exhibit a completely different trend than that at room temperature. This study may provide insights for breakthroughs in material properties from a temperature perspective.