Chialvo is one of the two-dimensional map-based neural models. In this paper, a memristor is added to this model to consider the electromagnetic induction’s effects. The memristor is defined based on a hyperbolic tangent function. The dynamical variations are analyzed by obtaining the bifurcation diagrams and Lyapunov spectra. It is shown that the most effective parameters on the dynamics are the magnetic strength and the injected current. The memristive Chialvo can exhibit different neural behaviors. It is also proven that, like the primary Chialvo model, the memristive version has coexisting attractors; an oscillating state coexists with a fixed point. In addition, to understand how memristive neurons behave in a network, two memristive Chialvo models are coupled with electrochemical synapses. By connecting two neurons and calculating the synchronization error, we can determine the system’s synchronizability. It is indicated that the electrical coupling is essential for the occurrence of complete synchronization in the network of memristive Chialvo, and the sole chemical coupling does not lead to synchronization.