Ballistic experiments have been performed using aluminum spheres against 10-mm rolled homogenous armour (RHA), MARS270, MARS300, and titanium alloy plates to investigate the influence of the plugging mechanism on material properties. The experiments have measured the threshold for plug mass and velocity as well as the recovered aluminum sphere mass over a range of velocities. Some of the experiments have been simulated using the in-house second generation Eulerian hydrocode GRIM. The calculations feature advanced material algorithms derived from interrupted tensile testing techniques and a triaxial failure model derived from notched tensile tests over a range of strain rates and temperatures. The effect of mesh resolution on the results has been investigated and understood. The simulation results illustrate the importance of the constitutive model in the shear localization process and the subsequent plugging phenomena. The stress triaxiality is seen as the dominant feature in controlling the onset and subsequent propagation of the crack leading to the shear plug. The simulations have demonstrated that accurate numerics coupled with accurate constitutive and fracture algorithms can successfully reproduce the observed experimental features. However, extrapolation of the fracture data leads to the simulations overpredicting the plug damage. The reasons for this are discussed.