Wnt signaling plays a pivotal role in maintaining bone mass. Secreted pathway modulators such as sclerostin (SOST) and Dickkopfs (DKKs) may influence bone mass inhibiting the canonical Wnt pathway. We evaluated whether bone protein content of secreted Wnt antagonists is related to age, bone mass, and strength in postmenopausal osteoporosis. We measured cortical and trabecular bone contents of SOST and Dickkopf-1 (DKK1) in combined extracts obtained after ethylenediaminetetraacetic acid and guanidine hydrochloride extraction in 56 postmenopausal women aged 47–74 (mean, 63) yr with a previous distal forearm fracture and a hip or spine Z-score less than 0. Our findings were (i) SOST and DKK1 protein levels were higher in trabecular bone, (ii) cortical and trabecular DKK1 and trabecular SOST correlated positively with bone matrix levels of osteocalcin (r between 0.28 and 0.45, p < 0.05), (iii) cortical DKK1 correlated with lumbar spine bone mineral density (BMD) (r = 0.32, p < 0.05) and femoral neck BMD (r = 0.41, p < 0.01), and (iv) cortical DKK1 and SOST correlated with apparent bone volumetric density and compressive strength (r between 0.34 and 0.51, p < 0.01). In conclusion, cortical bone matrix levels of DKK1 and SOST were positively correlated with bone mass and bone strength in postmenopausal osteoporotic women.