In Al 0.35 Ga 0.65 As/GaAs/Al 0.25 Ga 0.75 As quantum wells, the hole-confined polar optical phonon interaction is investigated. To calculate the valence band structure, we use the Luttinger-Kohn Hamiltonian with the k.p method. Within the dielectric continuum model, the hole-confined phonon scattering rates of intrasubband heavy holes in quantum well are calculated. It is found that the scattering rates are governed by an overlap integral and the density of states. Moreover, the scattering rates are reduced under compressive hydrostatic strain for low hole energy. The anisotropic effect on hole-confined phonon interaction is also studied.