In this paper, we systematically study the spontaneous decay phenomenon of a
two-level system under the influences of both its environment and continuous
measurements. In order to clarify some well-established conclusions about the
quantum Zeno effect (QZE) and the quantum anti-Zeno effect (QAZE), we do not
use the rotating wave approximation (RWA) in obtaining an effective
Hamiltonian. We examine various spectral distributions by making use of our
present approach in comparison with other approaches. It is found that with
respect to a bare excited state even without the RWA, the QAZE can still happen
for some cases, e.g., the interacting spectra of hydrogen. But for a physical
excited state, which is a renormalized dressed state of the atomic state, the
QAZE disappears and only the QZE remains. These discoveries inevitably show a
transition from the QZE to the QAZE as the measurement interval changes.Comment: 14 pages, 8 figure