The present study evaluated the reliability of FEA on the results of different mechanical properties (E and v) of materials. Two 3D models of a maxillary canine with endodontic treatment, intracanal post, composite resin core and restored with porcelain-fused-tometal crown were generated according to micro-CT images. Two groups with different E and ν values for porcelain, metal coping alloy, resin cement and composite resin were established. The materials' properties for group GL were based on literature data, while for group GIE the impulse excitation technique was used. A load of 180 N was applied at 45° on the incisal third of the lingual surface of the canine tooth. All models were supported by the periodontal ligament (x=y=z=0). The von Mises stress (VMS) was calculated. The stress values revealed differences between the groups for both VMS distribution and value. The porcelain (GL: 5.966 MPa; GIE: 7.478 MPa), metal coping (GL: 3.811 MPa; GIE: 0.973 MPa) and core (GL: 4.771 MPa; GIE: 0.026 MPa) were significantly affected. In conclusion, this study showed that the determination of mechanical properties (E and ν) of materials is essential for the reliability on the results of FEA.