Desirable properties of carbon fiber-reinforced plastic (CFRP) composites include their high strength, high rigidity, light weight, corrosion free, and fatigue resistance. CFRP composites are popularly applied in bridge engineering structures, but the causes of fatigue damage in CFRP bridges have not been thoroughly investigated. We adopt acoustic emission (AE) technology to monitor fatigue damage and failure of CFRP bridge cables. The relationship between AE signal characteristics and CFRP cable fatigue damage, as well as the pattern of AE signals during a fatigue test, is investigated. Results show that the failure models exhibit matrix and fiber-matrix interface failures at the initial stage of fatigue testing, followed by delamination and fiber rupture. The b value, Kurtosis index, and RA value based on AE characteristic parameters are proposed to describe the different damage stage failure modes. Finally, the failure types of AE waveform are extracted and analyzed using wavelet transformation. The AE technique proved to be a potential means for evaluating the fatigue damage characteristics of CFRP cables.