The PhD project, entitled "Second harmonic generation in disordered nonlinear crystals: application to ultra-short laser pulse characterization", is devoted to the study of second harmonic generation in nonlinear ferroelectric crystals formed by a random distribution of domains with inverted quadratic nonlinear susceptibility (such as the Strontium Barium Niobate and Calcium Barium Niobate crystals) and its application to the single-shot characterization of ultrashort laser pulses. The basic principle of operation is related to the unique type of emission associated to those kinds of crystals where the second harmonic signal is emitted transversally to the beam propagation direction. Using the transverse second harmonic generation from these crystals we measure the pulse duration, the chirp parameter and the temporal profile in a single-shot configuration. This method has been implemented both in transverse auto-correlation and transverse cross-correlation schemes for the measurement of pulses with durations in the range from several tens up to several hundreds of femtoseconds. The main advantages gained with the developed techniques against other traditional methods include the removal of the requirement of thin nonlinear crystals for harmonic generation, the possibility to get automatic phase matching without angular alignment or temperature control over a very wide spectrum and a simplified operation process. Different types of pulses have been measured in different conditions and the limits of validity of the technique have been explored.
Since this work relies strongly upon the characteristics of emission of the second harmonic signal by these random crystals, an important part of this work has been focused on the characterization of the distribution of domains of the random nonlinear ferroelectric crystals and its relation with the angular emission of the second harmonic signal. The domain distribution of the nonlinear polarization implies an associated distribution of reciprocal lattice vectors, which can compensate the phase mismatch in the nonlinear interaction. Any change in the domain distribution would have a direct impact in the second harmonic generated and in its intensity angular distribution. Based on these fundamental concepts we demonstrate an indirect non-destructive optical method for the characterization of nonlinear domain statistics based on the analysis of the second harmonic generation intensity angular distribution. This method has been implemented experimentally and tested in crystals with different types of distributions. To gain a deeper insight on these processes, numerical simulations have been performed using a split-step fast-Fourier transform beam propagation method. It has been demonstrated that the analysis of the dependence of the second harmonic generation angular emission with the fundamental beam wavelength can be used to obtain relevant information about complicated domain structures. This method could be used for real time monitoring of the unknown domain distribution during the poling or crystal growing process
Esta tesis doctoral es un estudio de la generación de segundo armónico en cristales no lineales compuestos por dominios ferroeléctricos que alternan el signo de la non linealidad de segundo orden y distribuidos de una forma aleatoria (como por ejemplo niobato de estroncio y bario o niobato de calcio y bario). Como primera aplicación proponemos una técnica de caracterización de pulsos laser ultracortos, cuyo principio de operación está relacionado con la manera singular en la que este tipo de cristal emite la señal de segundo armónico en una dirección transversal a la dirección de propagación del pulso a medir. Utilizando esta señal no lineal podemos determinar la duración del pulso, el parámetro de chirp y el perfil temporal en una configuración de single-shot. Hemos implementado este método en dos configuraciones distintas -auto correlación y correlación cruzada- para la medida de pulsos con duraciones entre 10 fs y 1 ps. Este método, en comparación con otros métodos tradicionales para la caracterización de pulsos ultracortos, permite obtener el ajuste de fase (phase matching) de forma automática sobre un rango espectral muy amplio, sin necesidad de aliñamiento crítico ni ajuste de temperatura, elimina el requisito de utilizar cristales delgados y tiene un proceso de operación más sencillo. Se han medido diferentes tipos de pulsos y se han explorado las limitaciones de la técnica. Como este trabajo se basa en las propiedades específicas de la emisión de segundo armónico en los cristales no lineales con distribución aleatoria de dominios, un objetivo importante ha sido la caracterización del tamaño y la distribución de los dominios ferroelectricos y su relación con la distribución angular específica del segundo armónico generado. La distribución espacial de los dominios implica una distribución correspondiente de vectores en la red recíproca que puede compensar el ajuste de fase en la interacción no lineal. Cualquier cambio en la distribución de dominios tendrá pues un impacto directo en la intensidad y distribución angular de la señal de segundo armónico generado. Basándolos en estos conceptos, demostramos un método óptico non destructivo indirecto para la caracterización estadística de los dominios no lineales basado en el análisis de la intensidad y la distribución angular del segundo armónico generado. Implementamos este método experimental en la caracterización de cristales con diferentes tipos de dominios. Para un estudio más detallado hemos desarrollado un modelo numérico basado en el método de "split-step fast-Fourier transform beam propagation" que simula el proceso no lineal observado experimentalmente. Demostramos que el análisis de la dependencia angular del segundo armónico puede aportar información relevante sobre estructuras con distribuciones complejas de dominios. Este método se puede utilizar para la monitorización en tiempo real de distribuciones desconocidas en el mismo proceso de crecimiento o del poling del cristal ferroelectrico.
Ce projet de thèse de doctorat est intitulé « Génération du second harmonique dans des cristaux non-linéaires désordonnés: application pour la caractérisation d'impulsions laser ultra-courtes ». Il est consacré à l'étude de la génération de deuxième harmonique dans des cristaux ferroélectriques non linéaires formés par une distribution aléatoire de domaines. Ceci conduit à une distribution aléatoire de la susceptibilité non linéaire quadratique (Tels que le nitrate de baryum de strontium –SBN- et les cristaux de nitrate de calcium et de calcium) et son application à la caractérisation unique des impulsions laser ultra-courtes. Le principe de base de l'opération est lié au type unique d'émission associé à ces types de cristaux où le second signal harmonique est émis transversalement à la direction de propagation du faisceau. En utilisant la génération transversale de deuxième harmonique à partir de ces cristaux, nous mesurons la durée de l'impulsion, le paramètre chirp et le profil temporel dans une configuration à un seul pulse laser. Cette méthode a été mise en oeuvre à la fois dans l'autocorrélation transversale et les schémas transversaux de corrélation croisée pour la mesure des impulsions avec des durées allant de plusieurs dizaines à plusieurs centaines de femtosecondes. Les principaux avantages obtenus avec les techniques développées par rapport à d'autres méthodes traditionnelles comprennent l'élimination de l'exigence de cristaux minces non linéaires pour la génération harmonique, la possibilité d'obtenir une correspondance automatique de phase sans alignement angulaire ou contrôle de la température sur un spectre très large et un processus d'opération simplifié. Différents types d'impulsions ont été mesurés dans différentes conditions et les limites de validité de la technique ont été explorées.
Étant donné que ce travail repose fortement sur les caractéristiques de l'émission du second signal harmonique par ces cristaux ferroélectriques à distribution aléatoire des domaines, une partie importante de ce travail a été axée sur la caractérisation de la distribution des domaines des cristaux ferroélectriques non linéaires aléatoires et sa relation avec l'émission angulaire du signal de la deuxième harmonique. La distribution de la polarisation non linéaire implique une distribution associée de vecteurs de réseau réciproque, ce qui peut compenser le décalage de phase dans l'interaction non linéaire. Toute modification de la répartition des domaines aurait un impact direct dans la distribution angulaire de la deuxième harmonique et de sa distribution angulaire d'intensité. Sur la base de ces concepts fondamentaux, nous démontrons une méthode optique non destructive indirecte pour la caractérisation de statistiques des domaines non linéaire basées sur l'analyse de la distribution angulaire d'intensité de génération de la deuxième harmonique. Cette méthode a été mise en oeuvre expérimentalement et testée dans des cristaux avec différents types de distributions. Pour obtenir une meilleure compréhension de ces processus, des simulations numériques ont été effectuées en utilisant une méthode de propagation de faisceau adaptée aux matériaux non linéaires. Il a été démontré que l'analyse de la dépendance de l'émission angulaire de la deuxième génération harmonique avec la longueur d'onde fondamentale du faisceau peut être utilisée pour obtenir des informations pertinentes sur les structures de domaines compliquées. Cette méthode pourrait être utilisée pour la surveillance en temps réel de la distribution de domaines inconnue pendant le processus de polling ou de croissance des cristaux.