Since the discovery of photoelectrochemical (PEC) water splitting with titanium dioxide electrodes in the presence of ultraviolet light, much work has been conducted to build an effective PEC water splitting system and develop novel photoelectrodes. Using a facile and controllable electrodeposition method, a thin tungsten trioxide (WO3) film electrode onto a stainless steel (SS) substrate was synthetized. The effect of the deposition time on the structural, morphological, optical, and electrical properties of the as-grown WO3 thin films was assessed. XRD spectra of the obtained films reveal the polycrystalline nature of WO3 with a triclinic phase and exhibit a sharp transition to the (002) plane when the deposition time was extended beyond 10 min. The surface morphology showed a remarkable change in the grain size, thickness, and surface roughness when varying the deposition time. UV–Vis spectrophotometry revealed that the optical band gap values of WO3 decreased from 1.78 to 1.36 eV by extending the electrodeposition duration from 10 to 30 min, respectively. Notably, as indicated from the PEC measurements, the obtained photoelectrode exhibited the effects of the deposition time on the photocurrent density, and the maximum value obtained was around 0.07 mA cm−2 for the sample deposited at 10 min. Finally, this study presents for the first time an artificial neural network model to predict the PEC behavior of the prepared photoanode, with a highly satisfactory performance of less than 0.05% error. The low cost and simply synthetized WO3/SS electrode with superior electrochemical performance and the excellent correlation between the experimental and theoretical results demonstrate its potential for practical application in water splitting and hydrogen production.