We measure the angular distribution of an electron emitted by a strong elliptically polarized two-color laser field from exploding doubly charged molecular nitrogen. This angular distribution is vastly different for emission of the electron from the up-field core of the molecule as compared to that from the down-field core. The emission from the down-field core leads to a slight rotation with respect to the internuclear axis in the direction expected by the Coulomb effect of the remaining ion, while, for the emission from the up-field core, this direction is inversed. Our semiclassical simulations suggest that this unexpected angular distribution is caused by an initial longitudinal momentum of the electron freed by over-the-barrier ionization above the inner barrier in the molecule. The initial kinetic energy is in the range of the potential energy of the Stark-shifted orbital above the barrier.