Joule heating of NiTi shape memory alloy wires is a commonly applied technique for heat treatment and shape setting in many applications. Another innovative use of this method is to produce functionally graded NiTi. In this study, NiTi wires with spatially varied shape memory characteristics along the length were created by electrical resistance over-aging of a Ni-rich superelastic NiTi alloy. The stress-strain behaviour of such wires exhibited some new and unique characteristics during the stress-induced martensitic transformation, including two discrete stress plateaus, stress serration during transition between the two stress plateaus and an arch-shaped stress plateau in the over-aged section. These unique features have direct implications to design using NiTi alloys and the underlying mechanisms are explained in this study.