We examined effects of the queen’s presence on diurnal rhythms of temperature preference (TP) and locomotor activity (LA) in worker honeybees’ groups. TP and LA of six queenless and six queenright (with the queen) groups of bees, consisting of 7–8 worker bees, were recorded in a thermal gradient system for four days, under light to darkness (LD) 12:12 photoperiod. The same experiments were conducted on five virgin queens (of the same age as those in the queenright groups), which were placed individually in the gradient chambers. The single virgin queens showed signs of distress and no rhythms of TP and LA. In contrast, there were diurnal rhythms of TP and LA in both group variants with daytime activity and nighttime rest. However, the queen’s presence exerted a strong calming effect, reducing LA of bees both at day- and nighttime. The nighttime minimum LA of queenright groups was five times lower than that in queenless groups. Moreover, there was a reversal of the diurnal pattern of TP in queenright groups. The results are discussed in terms of the bee colony organization as a superorganism.