Photoperiod, or the daily sequence of light and dark, has dramatic effects on many physiological systems across animal species. Light patterns alter melatonin secretion profiles and, subsequently, the release profiles and circulating concentrations of several hormones that influence a variety of physiological responses. Although the impact of photoperiod on reproductive processes is perhaps the most common example, it is often the seasonal aspects of ovulation and anestrus that are considered. However, in cattle, the final phase of reproduction, that is, lactation, is significantly influenced by photoperiod. In contrast to short days (SDPP; 8 h light:16 h dark), exposure to long days (LDPP) of 16 to 18 h of light and 6 to 8 h of darkness increases milk yield 2 to 3 kg/d, regardless of the stage of lactation. There is evidence that this LDPP effect is due to increased circulating IGF-I, independent of any effect on GH concentrations. Cows that are housed under SDPP during the dry period have increased mammary growth and produce 3 to 4 kg/d more milk in the subsequent lactation compared with cows on LDPP when dry. While cows are on SDPP, circulating prolactin (PRL) diminishes but expression of PRL receptor increases in mammary, liver, and immune cells. Moreover, PRL signaling pathways within those tissues are affected by photoperiod. Further, replacement of PRL to cows on SDPP partially reverses the effects of SDPP on production in the next lactation. Thus, effects on dry cows are mediated through a PRL-dependent pathway. Before maturity, LDPP improve mammary parenchymal accumulation and lean body growth, which lead to greater yields in the first lactation. The accumulated evidence supports the concept that photoperiod manipulation can be harnessed to improve the efficiency of production across the life cycle of the dairy cow.